HYDRAULIC ANALYSIS FOR THE PEDESTRIAN BRIDGE OVER HOWARD CREEK

Greenbrier County, White Sulphur Springs, WV

Faheem Ahmad, PE, PS, CFM Venkata Ajay Madala, CPESC

> May 16, 2023 1:00 – 1:30 PM

Project Location

Project Location

Pedestrian Bridge Over Howard Creek

Project Location (Rendering)

Flooding History (2016 Flooding)

- During the 2016 flood event, the bridge was under water due to the backwater from Howard Creek
- Two-day rainfall accumulations reached 9.17"
- The flood was recorded as 1000-year event

White Sulphur Springs, WV During the Flood

US Route 60 During the Flood

Greenbrier County Golf Course

Flood Damages in White Sulphur Springs, WV During the Flood

Hydraulics

As per the Flood Insurance Study of Greenbrier County, WV, the drainage area of the Howard Creek at Big Draft Road is **59.80 sq. miles**.

Local Floodplain Manager City of White Sulphur Springs

Reece "BO" Belshee Ph: 304-536-1454

Hydraulics

- As per Flood Insurance Rate map (54025CV000A), the proposed bridge is in Zone AE, which was identified on October 16, 2012. It has base floods and floodway determined.
- The floodway width within the limits of the project ranges from a min of 111 ft to a max of 492 ft.

Hydraulics

Ducfilo	Peak Discharges (CFS) at various locations							
Name	At US Route 60 RS 41574	At Big Draft Road RS 40176	At Garden Street * RS 38486					
10-Yr	7,732	6,807	4,938					
50-Yr	13,109	11,750	9,100					
100-Yr	15,860	14,264	11,201					
500-Yr	26,500	24,900	15,600					

* Approximately 2,670 ft upstream of Garden Street

Hydraulic Modeling

- One-dimensional models represent a waterway with cross sections and associated attributes specified along and between each section.
- Input data and computed model results are associated with user-defined cross sections.
- 1D models are useful when the hydraulics do not violate the internal assumptions of 1D models and when modelers can confidently make the assumptions required for input.
- For example, flow in a channel is relatively simple and can be analyzed successfully with a 1D model.
- The equations that are used for 1D Modeling do not account for flow direction or path, velocity distribution, momentum, and or turbulence.

Reference: FHWWA-HIF-19-061 Two-Dimensional Hydraulic Modeling for Highways in the River Encroachment, Reference Document

2D Hydraulics

According to, FEMA's Guidance for Flood Risk Analysis and Mapping, 2020, "there are some situations where 1D modeling alone is not capable of accurately representing flood conditions.

These include flat terrain with very wide, shallow floodplains; flow through highly urbanized areas; and breakout flow that is hydraulically independent from a main channel/watercourse. In these situations, it may be necessary to employ two-dimensional (2D) modeling, or 2Dinformed 1D modeling".

The Federal Highway Administration (FHWA) is encouraging to change from 1-D to 2-D modeling through the CHANGE: Collaborative Hydraulics: Advancing to the Next Generation of Engineering. 2-D models avoid many of the limiting assumptions required by 1-D models, and the results can significantly improve the ability to design safer, more cost-effective, and resilient structures on waterways.

2-D Hydraulic Modeling Recommendations

- Wide Floodplains
- Highly variable floodplain roughness
- Highly sinuous channels
- Multiple embankment openings
- Moderate to high roadway skew
- Multiple channels
- Large tidal waterways
- Upstream hydraulic controls
- Roadway overtopping

Reference: FHWWA-HIF-19-061 Two-Dimensional Hydraulic Modeling for Highways in the River Encroachment, Reference Document

Advantages of 2D Hydraulics

- Fewer Modeling Assumptions
- Accurate Representations of Flow distribution, Velocity and Elevation
- Two-dimensional models calculate hydraulic results at locations within a mesh that covers the entire geographic extents of a river and floodplain.
- 2D models provide a more intuitive graphical representation of results as opposed to cross sections and tables from a 1D mode

1D vs 2D

Hydraulic Variables	1D Modeling	2D Modeling
Flow direction	Assumed by user	Computed
Flow paths	Assumed by user	Computed
Channel roughness	Assumed constant between cross sections	Roughness values at individual elements used in computations.
Ineffective flow areas	Assumed by user	Computed
Flow contraction and expansion through bridges	Assumed by user	Computed
Flow velocity	Averaged at each cross section	Computed at each element
Flow distribution	Approximated based on conveyance	Computed based on continuity and momentum
Water Surface Elevation	Assumed constant across entire cross section	Computed at each element

Reference: FHWWA-HIF-19-061 Two-Dimensional Hydraulic Modeling for Highways in the River Encroachment, Reference Document

2-D Hydraulic Model Development Of Pedestrian Bridge over Howard Creek

2D Hydraulic Model – Mesh Generation

2D Hydraulic Model – Channel Roughness

Mat	erial List and Pro	perties				×	River 1	Contract of	K R	6 6	9 and series	
						a standard	Sec. 28	Anna an	Contraction of the second		51.4	22
C	olor and Texture	Name	Manning's N	Depth Varied Curve	Curve	Sec. 1	MARRIE		A. S. S.	(And A		Print Print
L		unassigned	0.02			No. Contraction						A A
		Dense Trees	0.1			State State		CALCULAR STATE				40
		Channel	0.03				a a	Not the	the firm		1	States A
		Urban	0.06				A.C.	· Martin		5		a second
		Short Grass	0.04				man Ball			10	1.5	
		Less Dense Trees	0.08				1	C. C. C.	S / 📓	1		Salar 1
						5			X			
					C							N
						K						

2D Hydraulic Model – Flow Path & Velocity

E. L. Robinson Engineering Co.

- Headquartered in Charleston, WV ✓
- 100 % Employee-owned firm. Over 200 employees \checkmark located in ten offices.
- ✓ Continuously invest in education and training of our employees.
- Innovative and cost-effective solutions to WVDOH and \checkmark citizens of West Virginia for the past 43 years.

2012, 2019, 2020, 2021, 2022, 2023

Site Development

Water & Sanitary Engineering

Bridge & Structural Engineering

Transportation Engineering

Construction Engineering

Geotechnical Engineering

Surveying & Technology

Land Planning

Transportation Planning

Landscape Architecture

Economic Development

Oil & Natural Gas Development

Emergency Management

Planning & Environmental Services

Parks & Recreation Planning & Design

Locations, 185 Employees

<u>Charleston</u> 5088 W Washington St. Charleston, WV 25313

<u>Chapmanville</u> PO Box 4307 Chapmanville, WV 25508 <u>Beckley</u> 207 Brookshire Lane Beckley, WV 25801

NORTH CAROLINA

<u>Raleigh</u> 3362 Six Forks Roads Raleigh, NC 27609

<u>Ashland</u> 3145 Greenup Avenue Ashland, KY 41101

<u>Columbia</u> 9520 Berger Road, Berger Road, 21046

OHIO

<u>Columbus</u> 1801 Watermark Dr. Suite 310 Columbus, OH 43215 <u>Cleveland</u> The Western Reserve Building 1468 West 9th Street Suite 500 Cleveland, OH 44113 Ironton

415 Center Street Ironton, OH 45638 Little Hocking 25 Hillcrest Avenue Little Hocking, OH 45742

